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Innovative methods for land cover/use mapping
coping with limited availability of in-situ data
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LAND COVER & LAND USE DATA
ARE FUNDAMENTAL

Land cover and land use data have
been included in the list of the
global fundamental geospatial data
themes by the Committee of
Experts on Global Geospatial

Information Management in 2018
(E/C.20/2018/7/Add.1).

=\
%7 UN-GGIM

United Nations Committee of Experts on

Global Geospatial Information Management

E/C.20/2018/7/Add.1

Theme title: Land Cover and Land Use

Description
Land cover represents the physical and biological cover of the Earth’s surface. Land use 1s the current and future

planned management, and modification of the natural environment for different human purposes or econonuc
activities.

Why is this theme fundamental?

Land Cover data 1s required, for example, for developing land management policy. understanding spatial patterns of
biodiversity and predicting effects of climate change. It may also help to forecast other phenomena, such as erosion
or flooding. It is critical data in national assessments of biodiversity, conservation efforts, and water quality
monitoring.

The use of the land informs land management impacts, especially on changes in natural resources, agriculture,
conservation, and urban developments. Land cover and land use affect the greenhouse gases entering and leaving the
atmosphere and provide opportunities to reduce climate change. It 1s required at a disaggregated level to allow local
planning to manage and monitor land use at land parcel level.

‘Which sustainable development goals (SDGs) will it help to meet?

The theme playsarolein SDGs 1, 2,3, 5,6,7,8,9, 11,12 13, 14 and 15.

Geospatial data features in more detail

Land Cover includes artificial surfaces, agricultural areas, forest, semi-natural areas, wetlands and waterbodies etc.
Land Use in some ways describes the human activities and the consequences of such activities on the landscape.
Both Land Cover and Land Use are separated into different classes based on an agreed classification schema wihuch 1s

usually hierarchical. The data can be represented either as polygons or as a raster. It mavy also be found as attributes
of a land parcel.

Possible sources of geospatial data

e Classified Earth observation (EQ) data, potentially as a Data Cube;
e National datasets relating to environmental information and land parcels; and,

¢ International organisations, Regional United Nations Centre, different levels of public authorities (in particular
municipalities) and the private sector.

Existing geospatial data standards

Note: Tlus 1s indicative. Other lists of standards exist and UN-GGIM will seek to work with thematic experts to
develop a list of relevant data standards.

e IS0 19144-1:2009 — Geographic Information Classification system — Part 1 Classification system structure (last
reviewed in and confirmed in 20135);

e IS0 19144-2:2012 - Part 2 - Land Cover Meta Language (LCML) (there are linutations on this standard);

ISO 19115:2003 Geographic information — Metadata; and,

e INSPIRE data specification on Land Cover and on Land Use |
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GLOBAL MAPS

Pros:

Wide availability: e.g. ESA WorldCover,
ESA CCl, Copernicus, GlobelLand30,
FROM-GLC30, etc.

Available from 1992 through 2021
Medium to high resolution (1Tkm to 10m)
Strong consistency at a global scale, but
large deviations at the regional scale.
Overall accuracy at the global level is from

72% to 80%.

Cons:

Low accuracy at the regional scale and
very low at the national level

The legend may not satisfy national
requirements

Minor LC/LU classes are underestimated



- NATIONAL LC MAPS

Mozambique, 2000-2005-2010-2016, Nitidae and
CIRAD in the LAUREL project. Landsat, 30m.

National Maps

Pros

* High spatial accuracy and thematic accuracy

* Legend contains classes which satisfy national
requirements

Cons

* Maps are often old and are not not kept up-
to-date regularly

* Only few countries in the world produce their
national land cover maps on a regular bases

* Uncertainty in accuracy measures

* Heterogeneity methods and data among
different countries.

* Many of the maps are produced under the
auspices of specific projects by third parties
that come to an end.
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COMPLEXITY OF IMAGE PRE-PROCESSING

Sentinel-2 images
e

Cloud Masks

Cloud Masks Results
e
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Statistical Analysis

The complexity of image pre-
processing (including image atmospheric
correction and cloud masking), to more
advanced temporal compositing and
gap-filling which are required to derive
analysis-ready data (ARD) also called
data-cubes. Such operations are not
trivial and require  specialized
expertise in Remote Sensing and big
data handling.



PROGRAMMING SKILLS REQUIRED

EO data platforms which provide user
with access to EO data archives and
analytical libraries, function through code
editors. GEE uses Javascript, SEPAL and
DE Africa Jupyter Notebooks (Python).

Many technical experts in NSOs and
concerned line ministries who are very
familiar with traditional GIS packages
(QGIS, ArcGlIS) may not be very familiar
with scripting, and may prefer the use of
graphic user interfaces.

ript manager Inspector tab

API documentation Console output

Task muanager

Assest manager

e Egrth Engine

or 1ivignes + comptructisndianes rarmorlcfrequencion )

o iz Code editor

t'ixmt!ﬁ‘m (ol




LACK OF IN-SITU DATA OF ADEQUATE

QUALIT
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Top figure, example of GPS traces that contain more than
parcels boundaries. Bottom figure, challenge to localize the
surveyed parcels in the statistical database due to the fact
that parcels are localized by geo-points (i.e. a single GPS

coordinate)

In-situ data are essential for the automatic
classification of satellite images into land
cover or land use classes, as opposed to visual
interpretation.

In-situ data of sufficient quality is rare to find.
Common reasons for this are:

1) high costs of field survey campaigns
* Many data points to collect (e.g.12K for one country)
* Transportation cost, plus human resources

" Need to repeat survey for every reporting year
ii) suboptimal stratification of the samples

iii) suboptimal geo-referencing methods used
in the field.



WRY IN-3ITU DATA IS NEEDED - CALIBRATION

In-situ data is used for the calibration of
classification algorithms (e.g. Random
Forest) and for the validation of results,
allowing for calculating the accuracy of
map (OA, UA and PA) and estimate the
standard error in area estimation and the
confidence intervals based on 95%

confidence.

Wheat
Other Crop
Orchard

[| Beans

T Maize
Other crop
Rice

[ Potatoes
Cotton




WHY IN-SITU DATA IS NEEDED — VALIDATION

Groundnut Maize Millet Cowpea Sorghum Srt::sr
Groundnut 13172 289 233 178 79 184 93%
Maize 578 1110 284 0 136 162 49%
Millet 631 600 6282 87 193 88 80%
Cowpea 329 19 81 1203 1 20 73%
Sorghum 106 651 162 0 590 42 38%
Other
crops 959 46 239 257 104 2076 56%
83% 41% 86% 70% 53% 81% 78%

-

Accuracy Statistics

Overall Accuracy

Producer Accuracy

User Accuracy

Kappa Statistics

F1-Statistics
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OVERCOMING THE SHORTAGE OF IN-SITU
DATA BY ADDRESSING 2 KEY QUESTIONS?

I. Can we reuse in-situ data?

Il. Can we use data frugal classification algorithms?



|(AN WE REUSE IN SITU DATA?

The question is if we have an in-situ dataset with high positional and attribute accuracy (we
are lucky) for a given baseline year, can we re-use such a dataset to train and validate a
classifier for a different year?

The issue in re-using the in-situ data for a different year is connected to the risk that the land
cover or the land use at that specific location may have changed in the reference year, and
therefore the in-situ data point would be outdated. Using outdated in-situ data to train the

classifier would introduce bias. Similarly, using the outdated in-situ dataset for validation could
hide commission errors.

However, it is possible to use EO data (e.g NDVI) to assess the consistency of the spectral
characteristics of a pixel in time, and therefore to judge whether the LC/LU at this location has
changed. In this context, we can use a modified version of the method developed by Paris and
Bruzzone based on K-Means clustering to artificially update an in-situ dataset.



Step |: extraction of a land cover stratum from an existing LC
baseline 2021. In this example, we extract only one feature for the
‘Mining’ class and overlay it on a true color image background.

Cluster 1 {e.g Bare Surface) Cluster 2 [e.g. Trees) Cluster n {e.g. Water)

Step lll: We select the pixels from the dominant cluster and we filter
out minor clusters

Step Il we apply the Kmeans on NDVI for our target
year, 2019. Above we can clusters of pixels inside
the target feature, and the distribution of pixels per
cluster (below)

Cluster distribution

5,000 Il clustert
4,500 Il cluster2
I cluster3
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Abstract: The Food and Agriculture Onganization of the United Nations (FAO) i building a land
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for ch B led by the Government of Lesotho. The aim of the system
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reparting of official land cover statistics and to inform kand dicies. This
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paper presents an innavative methodology that has allowed the production of five dardized
annual kand cover maps (2017-2021) using only a single in situ dataset gathered in the field for the

reference year, 2021. A total of 10 land cover classes are represented in the maps, including specific

features, such as gullies, which are under close i g The mapping approach developed
includes the following: (i) the automatic g of tr, w and validation datasets for each
reparting year from a single in situ dataset; (i) the use of a Random Forest Classifier combined
with postp ing and ha steps 1o produce the five dardized annual land cover

maps; (il1) the construction of confusion matrives to assess the classification accuracy of the estimates
and their stability over time to ensure estimates” consistency. Results show that the error-adjusted
mnull xturatyo(!hcfncm.lpsrxqgcs from 87% (2021) to 83% (2017). The aim of this work is to

ble sol for op l land cover mapping that can cope with the scarcity of

in situ data, wi hxch is a common challenge in almost every developing country.

Keywords: supervised classification; of g and valid data; Sentinel-2
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L Introduction

Land Cover (LC) maps can be u-u:d to extract key information for a series of national
such as envi ing, identification of land degradation trends,
spahal planning, and for a wide range of ;cu-nhﬁc research ﬁeld:L Huwe\ er, continuous
mummnng and reporting of land cover maps requi dating, the use of stan-
d d methods, and the adoption of a robust validation lramemn'k munnb that every
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estimate is accurate and consistent over time. Such land cover mapping solutions are very
rare to find in countries due to the inh technical and fi ial chall found in both
traditional and modem LC mapping methods.

The most traditional methods that have been typically used in the last two decades
have been based, initially, on visual i image mltrpn!ahnn and pixel (or object) dassification,
relying on the use of \r.-ry high-resol ! ial satellite images and ortho-

photos), and subseq ly, on the binati ofEarthGJxﬂahmandm'utudahﬁx
caht ion and validation of ic classification models. Such solutions have been
extensively used in the research cnmmumt) [1-4).

FAQO adopted a visual interp

Lesotho Land Cover Atlas [5]. The meth

P h in 2015 to deliver the first edition of the
dology relied on a | labeling of segmented

Remsate Sens. 2022, 14, 294 hitps:/ / doiong / 103390/ s 1414324
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CAN WE USE LESS IN-SITU DATA?

. Random Forest (RF) is the de-facto mostly used supervised /( ‘)\ j{%
classifier. RF though necessitates of large amountsof L 1 |

J
|_ L _I
training data to avoid overfitting, and this means thousands ]
of data points. .

* FAO has explored the possibility to use a data frugal
algorithm (Dynamic Time Warping), which instead works by
assessing the similarities by pairs of time series data and Dynamic Time Warping Matching
allows also for coping with misalignment between these
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Earth observations for official crop statistics
in the context of scarcity of in-situ data

Lorenzo De Simone*® and Pietro Gennari
Food and Agriculture Organization of the United Nations, Maseru, Lesotho

Abstract. Remote sensing offers a scalable and low cost solution for the production of large-scale crop maps, whach can be
used 10 extract relevant crop statistics. However. despite consaderable advances in the new generation of satellite sensors and the
advent of cloud computing, the use of remote sensing for the production of sccurate crop maps and statistics remain dependant on
the avalability of ground truth data. Such data are necessary for the training of supervised classification algorithms and for the
validation of the results. Unfortunately, m-situ data of adequate quality for producing crop statistics are seld ilable in many
countries.

In this paper we compare the performance of two supervised classifiers, the Random Forest (RF) and the Dynamic Time Warping
(DTW), the former being a data intensive algorithm and the latter a more data frugal one, in extracting accurite crop type maps
from EO and in-situ data. The two classifiers are trained several times using datasets whach contain in tum an increasing number
m-situ samples gathered in the Kashkadarya region of Uzbekistan in 2018. We finally compare the accuracy of the maps produced
by the RF and the DTW classifiers with respect to the diff ber of training data used. Results show that when using only §
and 10 raining samples per each crop class, the DTW reaches a higher Overall Accuracy tham the RE. Only when using five times
more raining samples, the RF stans 1o perform slightly better that the DTW. We conclude that the DTW can be used 1 map crop
types using EO data in countries where limisted infsstu data are avaslable. We also highlight the critical importance in the choice of
the location of the in-situ data and its th lability for the sy of the final map. especially when using the DTW.

L. Introduction sensed images provide essential information to accu-
rately monitor the spatial distribution of crops and their
growth conditions. enabling national authorities to ad-
equately plan for food commodities supply, as well as
to gradually reduce the threat of food insecunty. Na-
tionwide. crop maps are instrumental tools that pro-
vide spatially explicit information about the quantity
and quality of croplands, and support socio-economic
decision-making.

Despite the considerable advances in the new gener-
ation of satellite sensors, which provide free and open
access to dense imagery time series, and the advent of
cloud computing. which facilitates the storage and com-
putation of EO data, the use of remote sensing for the
production of accurate crop maps and statistics remain
dependant on the availability of ground truth data. Such
data. also denominated in-situ data, being collected in
the field. are necessary for the training of supervised
classification algonithms and for the validation of the
results. However, in-situ data of adequate quality for
producing crop statistics (in combination with remote
sensing imageries) are scldom available in many coun-

FAQO is implementing the EOSTAT project. which
aims at building the capacity of countries in using Earth
Observations (EQ) and remote sensing as alternative
data sources for the production of official crop statis-
tics, under the overall objective of the modernization
of the National Statistics System, an initiative lead and
promoted by the UN Statistical Commission.

Remote sensing is a scalable and cost-cffective way
of producing national-scale cropland maps: time series
of open-source satellite missions, such as Sentinel 1
and 2 operated by the European Space Agency, allow
distinguishing agricultural land cover from other land
cover types, due to the inherently seasonal nature of
crop growth, also referred to as crop phenology. Crop-
land masks and crop type maps produced from remotely

* Corresponding author: Lorenzo De Simoee, Food and Agricul-
ture Orgamization of the United Nations, Lesatho. E-manl: Lorenzo.
DeSimone@ fao.org.

1874.7655 (©) 2022 - The authors. Published by 10S Press. This is an Open Access asticle distributed under the terms of the Creative Commons
Attribution-NonCommercial License (OC BY.NC 4.0)
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Integrated Geospatial Information Framework

The Integrated

Geospatial
Information
Framework
provides a basis
and guide for
developing,
integrating and
strengthening
geospatial
information

Governance —

Technology -

People -

Applications * Value

Technology *

Knowledge +*

Decisions *

Development

. SUIZIID »
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Anchored by 9
Strategic

Pathways, the
Frameworkis a
mechanism for
articulating and
demonstrating
national leadership
in geospatial
information, and
the capacity to

management. Society * Economy * Environment take positive steps.

Global Statistical Geospatial Framework

Accessible & usable

Statistical and geospatial
interoperability

Common geographies for
dissemination of statistics

Standards and

Geocoded unit record data in a | 7
data management environment J National Laws
and Policy
Use of fundamental geospatial, -
infrastructure and geocodi R

* Fundamental data

INPUT
» Supplementary data

Geospatial " « New data sources

N

Statistical

Interoperability
Comparability

Decision
making

Integration : @I@

FAQ’s work provides direct inputs to the Dataq,
Innovation, Standards and Capacity and Education
Pathways

Can support the implementation of the IGIF
providing standardized methods and tools

Direct contribution as:
1) Input: Fundamental Data
2) Output:
l.  Integration
ll.  Standardization
lll.  Interoperability
3) Analysis: land cover statistics, land cover change
analysis etc.
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Standardization of EO Methods
Standardizatiomn of in situ data requirements
Definition of wuality criterias for LC and LU maps

Integration of standardized methods to produce fundamental geospatila data
themes within the IGIF



